import functools
import inspect
import itertools
import operator
import warnings
from collections import OrderedDict
from typing import (
Any,
Callable,
Dict,
Iterable,
List,
Mapping,
Optional,
Sequence,
Tuple,
Union,
)
import numpy as np
import xarray as xr
from dask.array import Array as Dask_Array
from . import gridops, metadata_parsers
from .axis import Axis
from .grid_ufunc import (
GridUFunc,
_check_data_input,
_GridUFuncSignature,
_has_chunked_core_dims,
_maybe_unpack_vector_component,
_reattach_coords,
apply_as_grid_ufunc,
)
from .metrics import iterate_axis_combinations
from .padding import pad
try:
import numba # type: ignore
from .transform import transform
except ImportError:
numba = None
from typing import Literal
def _maybe_promote_str_to_list(a):
# TODO: improve this
if isinstance(a, str):
return [a]
else:
return a
[docs]class Grid:
"""
An object with multiple :class:`xgcm.Axis` objects representing different
independent axes.
"""
[docs] def __init__(
self,
ds: xr.Dataset,
coords: Optional[Mapping[str, Mapping[str, str]]] = None,
periodic: bool = True,
fill_value: Optional[Union[float, Mapping[str, float]]] = None,
default_shifts: Optional[
Mapping[str, str]
] = None, # TODO check if one default shift can be applied to many Axes
boundary: Optional[Union[str, Mapping[str, str]]] = None,
face_connections=None, # TODO type hint this
metrics: Optional[Mapping[Tuple[str], List[str]]] = None, # TODO type hint this
autoparse_metadata: bool = True,
):
"""
Create a new Grid object from an input dataset.
Parameters
----------
ds : xarray.Dataset
Contains the relevant grid information. Coordinate attributes
should conform to Comodo conventions [1]_.
coords : dict, optional
Specifies positions of dimension names along axes X, Y, Z, e.g
``{'X': {'center': 'XC', 'left: 'XG'}}``.
Each key should be an axis name (e.g., `X`, `Y`, or `Z`) and map
to a dictionary which maps positions (`center`, `left`, `right`,
`outer`, `inner`) to dimension names in the dataset
(in the example above, `XC` is at the `center` position and `XG`
at the `left` position along the `X` axis).
If the values are not present in ``ds`` or are not dimensions,
an error will be raised.
periodic : {True, False, list}
Whether the grid is periodic (i.e. "wrap-around"). If a list is
specified (e.g. ``['X', 'Y']``), the axis names in the list will be
periodic and any other axes founds will be assumed non-periodic.
fill_value : {float, dict}, optional
The value to use in boundary conditions with `boundary='fill'`.
Optionally a dict mapping axis name to seperate values for each axis
can be passed.
default_shifts : dict
A dictionary of dictionaries specifying default grid position
shifts (e.g. ``{'X': {'center': 'left', 'left': 'center'}}``)
boundary : {None, 'fill', 'extend', 'extrapolate', dict}, optional
A flag indicating how to handle boundaries:
* None: Do not apply any boundary conditions. Raise an error if
boundary conditions are required for the operation.
* 'fill': Set values outside the array boundary to fill_value
(i.e. a Dirichlet boundary condition.)
* 'extend': Set values outside the array to the nearest array
value. (i.e. a limited form of Neumann boundary condition.)
* 'extrapolate': Set values by extrapolating linearly from the two
points nearest to the edge
Optionally a dict mapping axis name to seperate values for each axis
can be passed.
face_connections : dict
Grid topology
metrics : dict, optional
Specification of grid metrics mapping axis names (X, Y, Z) to corresponding
metric variable names in the dataset
(e.g. {('X',):['dx_t'], ('X', 'Y'):['area_tracer', 'area_u']}
for the cell distance in the x-direction ``dx_t`` and the
horizontal cell areas ``area_tracer`` and ``area_u``, located at
different grid positions).
REFERENCES
----------
.. [1] Comodo Conventions https://web.archive.org/web/20160417032300/http://pycomodo.forge.imag.fr/norm.html
"""
if not isinstance(ds, xr.Dataset):
raise TypeError(
f"ds argument to `xgcm.Grid` must be of type xarray.Dataset, but is of type {type(ds)}"
)
self._ds = ds
# Attempt to autoparse metadata from various conventions
# Default is to do this to preserve backwards compatability
if autoparse_metadata:
ds, parsed_kwargs = metadata_parsers.parse_metadata(ds)
# Loop over input kwargs. If None and parsed alternative available
# then replace local variable with autoparsed. If conflict raise error.
print(f"coords = {coords}")
duplicates = []
if "coords" in parsed_kwargs:
if coords is None:
coords = parsed_kwargs["coords"]
else:
duplicates.append("coords")
if "fill_value" in parsed_kwargs:
if fill_value is None:
fill_value = parsed_kwargs["fill_value"]
else:
duplicates.append("fill_value")
if "default_shifts" in parsed_kwargs:
if default_shifts is None:
default_shifts = parsed_kwargs["default_shifts"]
else:
duplicates.append("default_shifts")
if "boundary" in parsed_kwargs:
if boundary is None:
boundary = parsed_kwargs["boundary"]
else:
duplicates.append("boundary")
if "face_connections" in parsed_kwargs:
if face_connections is None:
face_connections = parsed_kwargs["face_connections"]
else:
duplicates.append("face_connections")
if "metrics" in parsed_kwargs:
if metrics is None:
metrics = parsed_kwargs["metrics"]
else:
duplicates.append("metrics")
if len(duplicates) > 0:
raise ValueError(
f"Autoparsed Grid kwargs: '{', '.join(duplicates)}' conflict with "
f"user-supplied kwargs. Run with 'autoparse_metadata=False', or "
f"autoparse and amend kwargs before calling Grid constructer."
)
if boundary:
warnings.warn(
"The `boundary` argument will be renamed "
"to `padding` to better reflect the process "
"of array padding and avoid confusion with "
"physical boundary conditions (e.g. ocean land boundary).",
category=DeprecationWarning,
)
# Deprecation Warnigns
if periodic:
warnings.warn(
"The `periodic` argument will be deprecated. "
"To preserve previous behavior supply `boundary = 'periodic'.",
category=DeprecationWarning,
)
if fill_value:
warnings.warn(
"The default fill_value will be changed to nan (from 0.0 previously) "
"in future versions. Provide `fill_value=0.0` to preserve previous behavior.",
category=DeprecationWarning,
)
extrapolate_warning = False
if boundary == "extrapolate":
extrapolate_warning = True
if isinstance(boundary, dict):
if any([k == "extrapolate" for k in boundary.keys()]):
extrapolate_warning = True
if extrapolate_warning:
warnings.warn(
"The `boundary='extrapolate'` option will no longer be supported in future releases.",
category=DeprecationWarning,
)
if coords is None:
raise ValueError(
"Could not determine Axis names - please provide them in the coords kwarg "
"or provide a dataset from which they can be parsed"
)
all_axes = coords.keys()
# Convert all inputs to axes-kwarg mappings
# TODO We need a way here to check valid input. Maybe also in _as_axis_kwargs?
# Parse axis properties
boundary_dict = self._map_kwargs_over_axes(boundary, axes=all_axes)
# TODO: In the future we want this the only place where we store these.
# TODO: This info needs to then be accessible to e.g. pad()
# Parse list input. This case does only apply to periodic.
# Since we plan on deprecating it soon handle it here, so we can easily
# remove it later
if isinstance(periodic, list):
periodic_dict = {axname: True for axname in periodic}
else:
periodic_dict = self._map_kwargs_over_axes(periodic, axes=all_axes)
for ax, p in periodic_dict.items():
if boundary_dict[ax] is None:
if p is True:
boundary_dict[ax] = "periodic"
else:
boundary_dict[ax] = "fill"
default_shifts_dict = self._map_kwargs_over_axes(default_shifts, axes=all_axes)
fill_value_dict = self._map_kwargs_over_axes(fill_value, axes=all_axes)
# Set properties on grid object.
self._facedim = list(face_connections.keys())[0] if face_connections else None
self._connections = face_connections if face_connections else None
# TODO: I think of the face connection data as grid not axes properties, since they almost by defintion
# TODO: involve multiple axes. In a future PR we should remove this info from the axes
# TODO: but make sure to properly port the checking functionality!
# Populate axes. Much of this is just for backward compatibility.
self.axes = OrderedDict()
for axis_name in all_axes:
self.axes[axis_name] = Axis(
ds,
axis_name,
coords=coords[axis_name],
default_shifts=default_shifts_dict.get(axis_name, None),
boundary=boundary_dict.get(axis_name, None),
fill_value=fill_value_dict.get(axis_name, None),
)
if face_connections is not None:
self._assign_face_connections(face_connections)
self._metrics: Dict[Tuple[str], List[str]] = {}
if metrics is not None:
for key, value in metrics.items():
self.set_metrics(key, value)
def _map_kwargs_over_axes(
self,
kwargs: Union[Any, Dict[str, Any]],
axes: Optional[Iterable[str]] = None,
) -> Dict[str, Any]:
"""Convert kwarg input into dict for each available axis
E.g. for a grid with 2 axes for the keyword argument `periodic`
periodic = True --> periodic = {'X': True, 'Y':True}
or if not all axes are provided, the other axes will be parsed as defaults (None)
periodic = {'X':True} --> periodic={'X': True, 'Y':None}
"""
if axes is None:
axes = self.axes
mapped_kwargs: Dict[str, Any] = dict()
if isinstance(kwargs, dict):
mapped_kwargs = kwargs
else:
for axname in axes:
mapped_kwargs[axname] = kwargs
return mapped_kwargs
def _complete_user_kwargs_using_axis_defaults(
self,
user_kwargs: Union[Any, Dict[str, Any]],
property: str,
) -> Dict[str, Any]:
"""
Takes user choice of values for a given kwarg, and returns full per-axis mapping of kwargs,
filling in with Axis defaults when needed.
"""
defaults = {ax: getattr(self.axes[ax], property) for ax in self.axes}
if user_kwargs is not None:
user_kwargs = self._map_kwargs_over_axes(user_kwargs)
user_kwargs = defaults | user_kwargs
else:
user_kwargs = defaults
return user_kwargs
def _assign_face_connections(self, fc):
"""Check a dictionary of face connections to make sure all the links are
consistent.
"""
if len(fc) > 1:
raise ValueError(
"Only one face dimension is supported for now. "
"Instead found %r" % repr(fc.keys())
)
# we will populate this with the axes we find in face_connections
axis_connections = {}
facedim = list(fc.keys())[0]
if facedim not in self._ds.dims:
raise ValueError(
f"Face dimension {facedim} does not exist in the dataset. Found {list(self._ds.dims)} instead"
)
face_links = fc[facedim]
for fidx, face_axis_links in face_links.items():
for axis, axis_links in face_axis_links.items():
# initialize the axis dict if necssary
if axis not in axis_connections:
axis_connections[axis] = {}
link_left, link_right = axis_links
def check_neighbor(link, position):
if link is None:
return
idx, ax, rev = link
# need to swap position if the link is reversed
correct_position = int(not position) if rev else position
try:
neighbor_link = face_links[idx][ax][correct_position]
except (KeyError, IndexError):
raise KeyError(
"Couldn't find a face link for face %r"
"in axis %r at position %r" % (idx, ax, correct_position)
)
idx_n, ax_n, rev_n = neighbor_link
if ax not in self.axes:
raise KeyError("axis %r is not a valid axis" % ax)
if ax_n not in self.axes:
raise KeyError("axis %r is not a valid axis" % ax_n)
if idx not in self._ds[facedim].values:
raise IndexError(
"%r is not a valid index for face"
"dimension %r" % (idx, facedim)
)
if idx_n not in self._ds[facedim].values:
raise IndexError(
"%r is not a valid index for face"
"dimension %r" % (idx, facedim)
)
# check for consistent links from / to neighbor
if (idx_n != fidx) or (ax_n != axis) or (rev_n != rev):
raise ValueError(
"Face link mismatch: neighbor doesn't"
" correctly link back to this face. "
"face: %r, axis: %r, position: %r, "
"rev: %r, link: %r, neighbor_link: %r"
% (fidx, axis, position, rev, link, neighbor_link)
)
# convert the axis name to an acutal axis object
actual_axis = self.axes[ax]
return idx, actual_axis, rev
left = check_neighbor(link_left, 1)
right = check_neighbor(link_right, 0)
axis_connections[axis][fidx] = (left, right)
for axis, axis_links in axis_connections.items():
self.axes[axis]._facedim = facedim
self.axes[axis]._connections = axis_links
def set_metrics(self, key, value, overwrite=False):
metric_axes = frozenset(_maybe_promote_str_to_list(key))
axes_not_found = [ma for ma in metric_axes if ma not in self.axes]
if len(axes_not_found) > 0:
raise KeyError(
f"Metric axes {axes_not_found!r} not compatible with grid axes {tuple(self.axes)!r}"
)
metric_value = _maybe_promote_str_to_list(value)
for metric_varname in metric_value:
if metric_varname not in self._ds.variables:
raise KeyError(
f"Metric variable {metric_varname} not found in dataset."
)
existing_metric_axes = set(self._metrics.keys())
if metric_axes in existing_metric_axes:
value_exist = self._metrics.get(metric_axes)
# resetting coords avoids potential broadcasting / alignment issues
value_new = self._ds[metric_varname].reset_coords(drop=True)
did_overwrite = False
# go through each existing value until data array with matching dimensions is selected
for idx, ve in enumerate(value_exist):
# double check if dimensions match
if set(value_new.dims) == set(ve.dims):
if overwrite:
# replace existing data array with new data array input
self._metrics[metric_axes][idx] = value_new
did_overwrite = True
else:
raise ValueError(
f"Metric variable {ve.name} with dimensions {ve.dims} already assigned in metrics."
f" Overwrite {ve.name} with {metric_varname} by setting overwrite=True."
)
# if no existing value matches new value dimension-wise, just append new value
if not did_overwrite:
self._metrics[metric_axes].append(value_new)
else:
# no existing metrics for metric_axes yet; initialize empty list
self._metrics[metric_axes] = []
for metric_varname in metric_value:
metric_var = self._ds[metric_varname].reset_coords(drop=True)
self._metrics[metric_axes].append(metric_var)
def _get_dims_from_axis(self, da: xr.DataArray, axis: Iterable[str]) -> List[str]:
da = _maybe_unpack_vector_component(da)
dim = []
axis = _maybe_promote_str_to_list(axis)
for ax in axis:
if ax in self.axes:
all_dim = self.axes[ax].coords.values()
matching_dim = [di for di in all_dim if di in da.dims]
if len(matching_dim) == 1:
dim.append(matching_dim[0])
else:
raise ValueError(
f"Did not find single matching dimension {da.dims} from {da.name} corresponding to axis {ax}, got {matching_dim}."
)
else:
raise KeyError(f"Did not find axis {ax} from data array {da.name}")
return dim
[docs] def get_metric(self, array, axes):
"""
Find the metric variable associated with a set of axes for a particular
array.
Parameters
----------
array : xarray.DataArray
The array for which we are looking for a metric. Only its dimensions are considered.
axes : iterable
A list of axes for which to find the metric.
Returns
-------
metric : xarray.DataArray
A metric which can broadcast against ``array``
"""
metric_vars = None
array_dims = set(array.dims)
# Will raise a Value Error if array doesn't have a dimension corresponding to metric axes specified
# See _get_dims_from_axis
self._get_dims_from_axis(array, frozenset(axes))
possible_metric_vars = set(tuple(k) for k in self._metrics.keys())
possible_combos = set(itertools.permutations(tuple(axes)))
overlap_metrics = possible_metric_vars.intersection(possible_combos)
if len(overlap_metrics) > 0:
# Condition 1: metric with matching axes and dimensions exist
overlap_metrics = frozenset(*overlap_metrics)
possible_metrics = self._metrics[overlap_metrics]
for mv in possible_metrics:
metric_dims = set(mv.dims)
if metric_dims.issubset(array_dims):
metric_vars = mv
break
if metric_vars is None:
# Condition 2: interpolate metric with matching axis to desired dimensions
warnings.warn(
f"Metric at {array.dims} being interpolated from metrics at dimensions {mv.dims}. Boundary value set to 'extend'."
)
metric_vars = self.interp_like(mv, array, "extend", None)
else:
for axis_combinations in iterate_axis_combinations(axes):
try:
# will raise KeyError if the axis combination is not in metrics
possible_metric_vars = [
self._metrics[ac] for ac in axis_combinations
]
for possible_combinations in itertools.product(
*possible_metric_vars
):
metric_dims = set(
[d for mv in possible_combinations for d in mv.dims]
)
if metric_dims.issubset(array_dims):
# Condition 3: use provided metrics with matching dimensions to calculate for required metric
metric_vars = possible_combinations
break
else:
# Condition 4: metrics in the wrong position (must interpolate before multiplying)
possible_dims = [pc.dims for pc in possible_combinations]
warnings.warn(
f"Metric at {array.dims} being interpolated from metrics at dimensions {possible_dims}. Boundary value set to 'extend'."
)
metric_vars = tuple(
self.interp_like(pc, array, "extend", None)
for pc in possible_combinations
)
if metric_vars is not None:
# return the product of the metrics
metric_vars = functools.reduce(operator.mul, metric_vars, 1)
break
except KeyError:
pass
if metric_vars is None:
raise KeyError(
f"Unable to find any combinations of metrics for array dims {array_dims!r} and axes {axes!r}"
)
return metric_vars
[docs] def interp_like(self, array, like, boundary=None, fill_value=None):
"""Compares positions between two data arrays and interpolates array to the position of like if necessary
Parameters
----------
array : DataArray
DataArray to interpolate to the position of like
like : DataArray
DataArray with desired grid positions for source array
boundary : str or dict, optional,
boundary can either be one of {None, 'fill', 'extend', 'extrapolate'}
* None: Do not apply any boundary conditions. Raise an error if
boundary conditions are required for the operation.
* 'fill': Set values outside the array boundary to fill_value
(i.e. a Dirichlet boundary condition.)
* 'extend': Set values outside the array to the nearest array
value. (i.e. a limited form of Neumann boundary condition where
the difference at the boundary will be zero.)
* 'extrapolate': Set values by extrapolating linearly from the two
points nearest to the edge
This sets the default value. It can be overriden by specifying the
boundary kwarg when calling specific methods.
fill_value : float, optional
The value to use in the boundary condition when `boundary='fill'`.
Returns
-------
array : DataArray
Source data array with updated positions along axes matching with target array
"""
interp_axes = []
for axname, axis in self.axes.items():
try:
position_array, _ = axis._get_position_name(array)
position_like, _ = axis._get_position_name(like)
# This will raise a KeyError if you have multiple axes contained in self,
# since the for-loop will go through all axes, but the method is applied for only 1 axis at a time
# This is for cases where an axis is present in self that is not available for either array or like.
# For the axis you are interested in interpolating, there should be data for it in grid, array, and like.
except KeyError:
continue
if position_like != position_array:
interp_axes.append(axname)
array = self.interp(
array,
interp_axes,
fill_value=fill_value,
boundary=boundary,
)
return array
def __repr__(self):
summary = ["<xgcm.Grid>"]
for name, axis in self.axes.items():
is_periodic = "periodic" if axis._periodic else "not periodic"
summary.append(
"%s Axis (%s, boundary=%r):" % (name, is_periodic, axis.boundary)
)
summary += axis._coord_desc()
return "\n".join(summary)
def _1d_grid_ufunc_dispatch(
self,
funcname,
data: Union[xr.DataArray, Dict[str, xr.DataArray]],
axis,
to=None,
keep_coords=False,
metric_weighted: Optional[
Union[str, Iterable[str], Dict[str, Union[str, Iterable[str]]]]
] = None,
other_component: Optional[Dict[str, xr.DataArray]] = None,
**kwargs,
):
"""
Calls appropriate 1D grid ufuncs on data, along the specified axes, sequentially.
Parameters
----------
axis : str or list or tuple
Name of the axis on which to act. Multiple axes can be passed as list or
tuple (e.g. ``['X', 'Y']``). Functions will be executed over each axis in the
given order.
to : str or dict, optional
The direction in which to shift the array (can be ['center','left','right','inner','outer']).
Can be passed as a single str to use for all axis, or as a dict with separate values for each axis.
If not specified, the `default_shifts` stored in each Axis object will be used for that axis.
"""
if isinstance(axis, str):
axis = [axis]
# This function is restricted to a single data input, so we need to check the input validity
# here early.
# TODO: This will fail if a sequence of inputs is passed, but not with a very helpful error
# TODO: message. @TOM do you think it is worth to check the type and raise another error in that case?
data = _check_data_input(data, self)
# Unpack data for various steps below
data_unpacked = _maybe_unpack_vector_component(data)
# convert input arguments into axes-kwarg mappings
to = self._map_kwargs_over_axes(to)
if isinstance(metric_weighted, str):
metric_weighted = (metric_weighted,)
metric_weighted = self._map_kwargs_over_axes(metric_weighted)
signatures = self._create_1d_grid_ufunc_signatures(
data_unpacked, axis=axis, to=to
)
# if any dims are chunked then we need dask
if isinstance(data_unpacked.data, Dask_Array):
dask = "parallelized"
else:
dask = "forbidden"
if isinstance(data, dict):
array = {k: v.copy(deep=False) for k, v in data.items()}
else:
# Need to copy to avoid modifying in-place. Ideally we would test for this behaviour specifically
array = data.copy(deep=False)
# Apply 1D function over multiple axes
# TODO This will call xarray.apply_ufunc once for each axis, but if signatures + kwargs are the same then we
# TODO only actually need to call apply_ufunc once for those axes
for signature_1d, ax_name in zip(signatures, axis):
grid_ufunc, remaining_kwargs = _select_grid_ufunc(
funcname, signature_1d, module=gridops, **kwargs
)
ax_metric_weighted = metric_weighted[ax_name]
if ax_metric_weighted:
metric = self.get_metric(array, ax_metric_weighted)
array = array * metric
# if chunked along core dim then we need map_overlap
core_dim = self._get_dims_from_axis(data, ax_name)
if _has_chunked_core_dims(data_unpacked, core_dim):
# cumsum is a special case because it can't be correctly applied chunk-wise with map_overlap
# (it would need blockwise instead)
map_overlap = True if funcname != "cumsum" else False
dask = "allowed"
else:
map_overlap = False
array = grid_ufunc(
self,
array,
axis=[(ax_name,)],
keep_coords=keep_coords,
dask=dask,
map_overlap=map_overlap,
other_component=other_component,
**remaining_kwargs,
)
if ax_metric_weighted:
metric = self.get_metric(array, ax_metric_weighted)
array = array / metric
return self._transpose_to_keep_same_dim_order(data_unpacked, array, axis)
def _create_1d_grid_ufunc_signatures(
self, da, axis, to
) -> List[_GridUFuncSignature]:
"""
Create a list of signatures to pass to apply_grid_ufunc.
Created from data, list of input axes, and list of target axis positions.
One separate signature is created for each axis the 1D ufunc is going to be applied over.
"""
signatures = []
for ax_name in axis:
ax = self.axes[ax_name]
from_pos, _ = ax._get_position_name(da) # removed `dim` since it wasnt used
to_pos = to[ax_name]
if to_pos is None:
to_pos = ax._default_shifts[from_pos]
# TODO build this more directly?
signature_1d = _GridUFuncSignature.from_string(
f"({ax_name}:{from_pos})->({ax_name}:{to_pos})"
)
signatures.append(signature_1d)
return signatures
def _transpose_to_keep_same_dim_order(self, da, result, axis):
"""Reorder DataArray dimensions to match the original input."""
initial_dims = da.dims
shifted_dims = {}
for ax_name in axis:
ax = self.axes[ax_name]
_, old_dim = ax._get_position_name(da)
_, new_dim = ax._get_position_name(result)
shifted_dims[old_dim] = new_dim
output_dims_but_in_original_order = [
shifted_dims[dim] if dim in shifted_dims else dim for dim in initial_dims
]
return result.transpose(*output_dims_but_in_original_order)
[docs] def apply_as_grid_ufunc(
self,
func: Callable,
*args: xr.DataArray,
axis: Optional[Sequence[Sequence[str]]] = None,
signature: Union[str, _GridUFuncSignature] = "",
boundary_width: Optional[Mapping[str, Tuple[int, int]]] = None,
boundary: Optional[Union[str, Mapping[str, str]]] = None,
fill_value: Optional[Union[float, Mapping[str, float]]] = None,
dask: Literal["forbidden", "parallelized", "allowed"] = "forbidden",
map_overlap: bool = False,
**kwargs,
):
"""
Apply a function to the given arguments in a grid-aware manner.
The relationship between xgcm axes on the input and output are specified by
`signature`. Wraps xarray.apply_ufunc, but determines the core dimensions
from the grid and signature passed.
Parameters
----------
func : callable
Function to call like `func(*args, **kwargs)` on numpy-like unlabeled
arrays (`.data`).
Passed directly on to `xarray.apply_ufunc`.
*args : xarray.DataArray
One or more xarray DataArray objects to apply the function to.
axis : Sequence[Sequence[str]], optional
Names of xgcm.Axes on which to act, for each array in args. Multiple axes can be passed as a sequence (e.g. ``['X', 'Y']``).
Function will be executed over all Axes simultaneously, and each Axis must be present in the Grid.
signature : string
Grid universal function signature. Specifies the xgcm.Axis names and
positions for each input and output variable, e.g.,
``"(X:center)->(X:left)"`` for ``diff_center_to_left(a)``.
boundary_width : Dict[str: Tuple[int, int]
The widths of the boundaries at the edge of each array.
Supplied in a mapping of the form {axis_name: (lower_width, upper_width)}.
boundary : {None, 'fill', 'extend', 'extrapolate', dict}, optional
A flag indicating how to handle boundaries:
* None: Do not apply any boundary conditions. Raise an error if
boundary conditions are required for the operation.
* 'fill': Set values outside the array boundary to fill_value
(i.e. a Dirichlet boundary condition.)
* 'extend': Set values outside the array to the nearest array
value. (i.e. a limited form of Neumann boundary condition.)
* 'extrapolate': Set values by extrapolating linearly from the two
points nearest to the edge
Optionally a dict mapping axis name to separate values for each axis
can be passed.
fill_value : {float, dict}, optional
The value to use in boundary conditions with `boundary='fill'`.
Optionally a dict mapping axis name to separate values for each axis
can be passed. Default is 0.
dask : {"forbidden", "allowed", "parallelized"}, default: "forbidden"
How to handle applying to objects containing lazy data in the form of
dask arrays. Passed directly on to `xarray.apply_ufunc`.
map_overlap : bool, optional
Whether or not to automatically apply the function along chunked core dimensions using dask.array.map_overlap.
Default is False. If True, will need to be accompanied by dask='allowed'.
Returns
-------
results
The result of the call to `xarray.apply_ufunc`, but including the coordinates
given by the signature, which are read from the grid. Output is either a single
object or a tuple of such objects.
See Also
--------
apply_as_grid_ufunc
as_grid_ufunc
"""
return apply_as_grid_ufunc(
func,
*args,
axis=axis,
grid=self,
signature=signature,
boundary_width=boundary_width,
boundary=boundary,
fill_value=fill_value,
dask=dask,
map_overlap=map_overlap,
**kwargs,
)
[docs] def interp(self, da, axis, **kwargs):
"""
Interpolate neighboring points to the intermediate grid point along
this axis.
Parameters
----------
axis : str or list or tuple
Name of the axis on which to act. Multiple axes can be passed as list or
tuple (e.g. ``['X', 'Y']``). Functions will be executed over each axis in the
given order.
to : str or dict, optional
The direction in which to shift the array (can be ['center','left','right','inner','outer']).
If not specified, default will be used.
Optionally a dict with seperate values for each axis can be passed (see example)
boundary : None or str or dict, optional
A flag indicating how to handle boundaries:
* None: Do not apply any boundary conditions. Raise an error if
boundary conditions are required for the operation.
* 'fill': Set values outside the array boundary to fill_value
(i.e. a Dirichlet boundary condition.)
* 'extend': Set values outside the array to the nearest array
value. (i.e. a limited form of Neumann boundary condition.)
Optionally a dict with separate values for each axis can be passed (see example)
fill_value : {float, dict}, optional
The value to use in the boundary condition with `boundary='fill'`.
Optionally a dict with seperate values for each axis can be passed (see example)
vector_partner : dict, optional
A single key (string), value (DataArray).
Optionally a dict with seperate values for each axis can be passed (see example)
metric_weighted : str or tuple of str or dict, optional
Optionally use metrics to multiply/divide with appropriate metrics before/after the operation.
E.g. if passing `metric_weighted=['X', 'Y']`, values will be weighted by horizontal area.
If `False` (default), the points will be weighted equally.
Optionally a dict with seperate values for each axis can be passed.
Returns
-------
da_i : xarray.DataArray
The interpolated data
Examples
--------
Each keyword argument can be provided as a `per-axis` dictionary. For instance,
if a global 2D dataset should be interpolated on both X and Y axis, but it is
only periodic in the X axis, we can do this:
>>> grid.interp(da, ["X", "Y"], periodic={"X": True, "Y": False})
"""
return self._1d_grid_ufunc_dispatch("interp", da, axis, **kwargs)
[docs] def diff(self, da, axis, **kwargs):
"""
Difference neighboring points to the intermediate grid point.
Parameters
----------
axis : str or list or tuple
Name of the axis on which to act. Multiple axes can be passed as list or
tuple (e.g. ``['X', 'Y']``). Functions will be executed over each axis in the
given order.
to : str or dict, optional
The direction in which to shift the array (can be ['center','left','right','inner','outer']).
If not specified, default will be used.
Optionally a dict with seperate values for each axis can be passed (see example)
boundary : None or str or dict, optional
A flag indicating how to handle boundaries:
* None: Do not apply any boundary conditions. Raise an error if
boundary conditions are required for the operation.
* 'fill': Set values outside the array boundary to fill_value
(i.e. a Dirichlet boundary condition.)
* 'extend': Set values outside the array to the nearest array
value. (i.e. a limited form of Neumann boundary condition.)
Optionally a dict with separate values for each axis can be passed (see example)
fill_value : {float, dict}, optional
The value to use in the boundary condition with `boundary='fill'`.
Optionally a dict with seperate values for each axis can be passed (see example)
vector_partner : dict, optional
A single key (string), value (DataArray).
Optionally a dict with seperate values for each axis can be passed (see example)
metric_weighted : str or tuple of str or dict, optional
Optionally use metrics to multiply/divide with appropriate metrics before/after the operation.
E.g. if passing `metric_weighted=['X', 'Y']`, values will be weighted by horizontal area.
If `False` (default), the points will be weighted equally.
Optionally a dict with seperate values for each axis can be passed.
Returns
-------
da_i : xarray.DataArray
The differenced data
Examples
--------
Each keyword argument can be provided as a `per-axis` dictionary. For instance,
if a global 2D dataset should be differenced on both X and Y axis, but the fill
value at the boundary should be differenc for each axis, we can do this:
>>> grid.diff(da, ["X", "Y"], fill_value={"X": 0, "Y": 100})
"""
return self._1d_grid_ufunc_dispatch("diff", da, axis, **kwargs)
[docs] def min(self, da, axis, **kwargs):
"""
Minimum of neighboring points on the intermediate grid point.
Parameters
----------
axis : str or list or tuple
Name of the axis on which to act. Multiple axes can be passed as list or
tuple (e.g. ``['X', 'Y']``). Functions will be executed over each axis in the
given order.
to : str or dict, optional
The direction in which to shift the array (can be ['center','left','right','inner','outer']).
If not specified, default will be used.
Optionally a dict with seperate values for each axis can be passed (see example)
boundary : None or str or dict, optional
A flag indicating how to handle boundaries:
* None: Do not apply any boundary conditions. Raise an error if
boundary conditions are required for the operation.
* 'fill': Set values outside the array boundary to fill_value
(i.e. a Dirichlet boundary condition.)
* 'extend': Set values outside the array to the nearest array
value. (i.e. a limited form of Neumann boundary condition.)
Optionally a dict with separate values for each axis can be passed (see example)
fill_value : {float, dict}, optional
The value to use in the boundary condition with `boundary='fill'`.
Optionally a dict with seperate values for each axis can be passed (see example)
vector_partner : dict, optional
A single key (string), value (DataArray).
Optionally a dict with seperate values for each axis can be passed (see example)
metric_weighted : str or tuple of str or dict, optional
Optionally use metrics to multiply/divide with appropriate metrics before/after the operation.
E.g. if passing `metric_weighted=['X', 'Y']`, values will be weighted by horizontal area.
If `False` (default), the points will be weighted equally.
Optionally a dict with seperate values for each axis can be passed.
Returns
-------
da_i : xarray.DataArray
The mimimum data
Examples
--------
Each keyword argument can be provided as a `per-axis` dictionary. For instance,
if we want to find the minimum of sourrounding grid cells for a global 2D dataset
in both X and Y axis, but the fill value at the boundary should be different
for each axis, we can do this:
>>> grid.min(da, ["X", "Y"], fill_value={"X": 0, "Y": 100})
"""
return self._1d_grid_ufunc_dispatch("min", da, axis, **kwargs)
[docs] def max(self, da, axis, **kwargs):
"""
Maximum of neighboring points on the intermediate grid point.
Parameters
----------
axis : str or list or tuple
Name of the axis on which to act. Multiple axes can be passed as list or
tuple (e.g. ``['X', 'Y']``). Functions will be executed over each axis in the
given order.
to : str or dict, optional
The direction in which to shift the array (can be ['center','left','right','inner','outer']).
If not specified, default will be used.
Optionally a dict with seperate values for each axis can be passed (see example)
boundary : None or str or dict, optional
A flag indicating how to handle boundaries:
* None: Do not apply any boundary conditions. Raise an error if
boundary conditions are required for the operation.
* 'fill': Set values outside the array boundary to fill_value
(i.e. a Dirichlet boundary condition.)
* 'extend': Set values outside the array to the nearest array
value. (i.e. a limited form of Neumann boundary condition.)
Optionally a dict with separate values for each axis can be passed (see example)
fill_value : {float, dict}, optional
The value to use in the boundary condition with `boundary='fill'`.
Optionally a dict with seperate values for each axis can be passed (see example)
vector_partner : dict, optional
A single key (string), value (DataArray).
Optionally a dict with seperate values for each axis can be passed (see example)
metric_weighted : str or tuple of str or dict, optional
Optionally use metrics to multiply/divide with appropriate metrics before/after the operation.
E.g. if passing `metric_weighted=['X', 'Y']`, values will be weighted by horizontal area.
If `False` (default), the points will be weighted equally.
Optionally a dict with seperate values for each axis can be passed.
Returns
-------
da_i : xarray.DataArray
The maximum data
Examples
--------
Each keyword argument can be provided as a `per-axis` dictionary. For instance,
if we want to find the maximum of sourrounding grid cells for a global 2D dataset
in both X and Y axis, but the fill value at the boundary should be different
for each axis, we can do this:
>>> grid.max(da, ["X", "Y"], fill_value={"X": 0, "Y": 100})
"""
return self._1d_grid_ufunc_dispatch("max", da, axis, **kwargs)
[docs] def cumsum(
self,
da: xr.DataArray,
axis: Union[str, Iterable[str]],
to=None,
boundary=None,
fill_value=None,
metric_weighted=None,
keep_coords: bool = False,
) -> xr.DataArray:
"""
Cumulatively sum a DataArray, transforming to the intermediate axis
position.
Parameters
----------
da: xarray.DataArray
Data to apply cumsum to.
axis : str or list or tuple
Name of the axis on which to act. Multiple axes can be passed as list or
tuple (e.g. ``['X', 'Y']``). Functions will be executed over each axis in the
given order.
to : str or dict, optional
The direction in which to shift the array (can be ['center','left','right','inner','outer']).
If not specified, default will be used.
Optionally a dict with seperate values for each axis can be passed (see example)
boundary : None or str or dict, optional
A flag indicating how to handle boundaries:
* None: Do not apply any boundary conditions. Raise an error if
boundary conditions are required for the operation.
* 'fill': Set values outside the array boundary to fill_value
(i.e. a Dirichlet boundary condition.)
* 'extend': Set values outside the array to the nearest array
value. (i.e. a limited form of Neumann boundary condition.)
Optionally a dict with separate values for each axis can be passed (see example)
fill_value : {float, dict}, optional
The value to use in the boundary condition with `boundary='fill'`.
Optionally a dict with seperate values for each axis can be passed (see example)
metric_weighted : str or tuple of str or dict, optional
Optionally use metrics to multiply/divide with appropriate metrics before/after the operation.
E.g. if passing `metric_weighted=['X', 'Y']`, values will be weighted by horizontal area.
If `False` (default), the points will be weighted equally.
Optionally a dict with seperate values for each axis can be passed.
Returns
-------
da_i : xarray.DataArray
The cumsummed data
Examples
--------
Each keyword argument can be provided as a `per-axis` dictionary. For instance,
if we want to compute the cumulative sum of global 2D dataset
in both X and Y axis, but the fill value at the boundary should be different
for each axis, we can do this:
>>> grid.max(da, ["X", "Y"], fill_value={"X": 0, "Y": 100})
"""
if isinstance(axis, str):
axis = [axis]
to = self._map_kwargs_over_axes(to)
if isinstance(metric_weighted, str):
metric_weighted = (metric_weighted,)
metric_weighted = self._map_kwargs_over_axes(metric_weighted)
data = da
axes = [self.axes[ax_name] for ax_name in axis]
for ax in axes:
pos, dim = ax._get_position_name(da)
ax_metric_weighted = metric_weighted[ax.name]
if ax_metric_weighted:
metric = self.get_metric(data, ax_metric_weighted)
data = data * metric
# first use xarray's cumsum method
data = data.cumsum(dim=dim)
ax_to = to[ax.name]
if ax_to is None:
ax_to = ax._default_shifts[pos]
# now pad / trim the data as necessary
# here we enumerate all the valid possible shifts
if (pos == "center" and ax_to == "right") or (
pos == "left" and ax_to == "center"
):
# do nothing, this is the default for how cumsum works
ax_boundary_width = {ax.name: (0, 0)}
elif (pos == "center" and ax_to == "left") or (
pos == "right" and ax_to == "center"
):
data = data.isel(**{dim: slice(0, -1)})
ax_boundary_width = {ax.name: (1, 0)}
elif (pos == "center" and ax_to == "inner") or (
pos == "outer" and ax_to == "center"
):
data = data.isel(**{dim: slice(0, -1)})
ax_boundary_width = {ax.name: (0, 0)}
elif (pos == "center" and ax_to == "outer") or (
pos == "inner" and ax_to == "center"
):
ax_boundary_width = {ax.name: (1, 0)}
else:
raise ValueError(
f"From `{pos}` to `{ax_to}` is not a valid position "
f"shift for cumsum operation along axis {ax}."
)
padded = pad(
data=data,
grid=self,
boundary_width=ax_boundary_width,
boundary=boundary,
fill_value=fill_value,
)
# get dim with position to
new_dim_name = ax.coords[ax_to]
renamed = padded.rename(**{dim: new_dim_name})
# drop all coords to avoid conflicts when attaching new ones
coordless = renamed.drop_vars(renamed.coords)
reattached = _reattach_coords(
[coordless],
grid=self,
boundary_width=ax_boundary_width,
keep_coords=keep_coords,
)[0]
ax_metric_weighted = metric_weighted[ax.name]
if ax_metric_weighted:
metric = self.get_metric(reattached, ax_metric_weighted)
reattached = reattached / metric
data = reattached
return data
def _apply_vector_function(self, function, vector, **kwargs):
if not (len(vector) == 2 and isinstance(vector, dict)):
raise ValueError(
"Input is expected to be a dictionary with two key/value pairs which map grid axis to the vector component parallel to that axis"
)
warnings.warn(
"`interp_2d_vector` and `diff_2d_vector` will be removed from future releases."
"The same functionality will be accessible under the `xgcm.Grid.diff` and `xgcm.Grid.interp` methods, please see those docstrings for details.",
category=DeprecationWarning,
)
warnings.warn(
"`interp_2d_vector` and `diff_2d_vector` will be removed from future releases."
"The same functionality will be available under the `xgcm.Grid` methods.",
category=DeprecationWarning,
)
# this is currently only tested for c-grid vectors defined on edges
# moving to cell centers. We need to detect if we got something else
to = kwargs.get("to", "center")
if to != "center":
raise NotImplementedError(
"Only vector interpolation to cell "
"center is implemented, but got "
"to=%r" % to
)
for axis_name, component in vector.items():
axis = self.axes[axis_name]
position, coord = axis._get_position_name(component)
if position == "center":
raise NotImplementedError(
"Only vector interpolation to cell "
"center is implemented, but vector "
"%s component is defined at center "
"(dims: %r)" % (axis_name, component.dims)
)
x_axis_name, y_axis_name = list(vector)
# apply for each component
x_component = function(
{x_axis_name: vector[x_axis_name]},
x_axis_name,
other_component={y_axis_name: vector[y_axis_name]},
**kwargs,
)
y_component = function(
{y_axis_name: vector[y_axis_name]},
y_axis_name,
other_component={x_axis_name: vector[x_axis_name]},
**kwargs,
)
return {x_axis_name: x_component, y_axis_name: y_component}
[docs] def diff_2d_vector(self, vector, **kwargs):
"""
Difference a 2D vector to the intermediate grid point. This method is
only necessary for complex grid topologies.
Parameters
----------
vector : dict
A dictionary with two entries. Keys are axis names, values are
vector components along each axis.
%(neighbor_binary_func.parameters.no_f)s
Returns
-------
vector_diff : dict
A dictionary with two entries. Keys are axis names, values
are differenced vector components along each axis
"""
return self._apply_vector_function(self.diff, vector, **kwargs)
[docs] def interp_2d_vector(self, vector, **kwargs):
"""
Interpolate a 2D vector to the intermediate grid point. This method is
only necessary for complex grid topologies.
Parameters
----------
vector : dict
A dictionary with two entries. Keys are axis names, values are
vector components along each axis.
to : {'center', 'left', 'right', 'inner', 'outer'}
The direction in which to shift the array. If not specified,
default will be used.
boundary : {None, 'fill', 'extend'}
A flag indicating how to handle boundaries:
* None: Do not apply any boundary conditions. Raise an error if
boundary conditions are required for the operation.
* 'fill': Set values outside the array boundary to fill_value
(i.e. a Dirichlet boundary condition.)
* 'extend': Set values outside the array to the nearest array
value. (i.e. a limited form of Neumann boundary condition.)
fill_value : float, optional
The value to use in the boundary condition with `boundary='fill'`.
vector_partner : dict, optional
A single key (string), value (DataArray)
keep_coords : boolean, optional
Preserves compatible coordinates. False by default.
Returns
-------
vector_interp : dict
A dictionary with two entries. Keys are axis names, values
are interpolated vector components along each axis
"""
return self._apply_vector_function(self.interp, vector, **kwargs)
[docs] def derivative(self, da, axis, **kwargs):
"""
Take the centered-difference derivative along specified axis.
Parameters
----------
axis : str or list or tuple
Name of the axis on which to act. Multiple axes can be passed as list or
tuple (e.g. ``['X', 'Y']``). Functions will be executed over each axis in the
given order.
to : str or dict, optional
The direction in which to shift the array (can be ['center','left','right','inner','outer']).
If not specified, default will be used.
Optionally a dict with seperate values for each axis can be passed (see example)
boundary : None or str or dict, optional
A flag indicating how to handle boundaries:
* None: Do not apply any boundary conditions. Raise an error if
boundary conditions are required for the operation.
* 'fill': Set values outside the array boundary to fill_value
(i.e. a Dirichlet boundary condition.)
* 'extend': Set values outside the array to the nearest array
value. (i.e. a limited form of Neumann boundary condition.)
Optionally a dict with separate values for each axis can be passed (see example)
fill_value : {float, dict}, optional
The value to use in the boundary condition with `boundary='fill'`.
Optionally a dict with seperate values for each axis can be passed (see example)
vector_partner : dict, optional
A single key (string), value (DataArray).
Optionally a dict with seperate values for each axis can be passed (see example)
metric_weighted : str or tuple of str or dict, optional
Optionally use metrics to multiply/divide with appropriate metrics before/after the operation.
E.g. if passing `metric_weighted=['X', 'Y']`, values will be weighted by horizontal area.
If `False` (default), the points will be weighted equally.
Optionally a dict with seperate values for each axis can be passed.
Returns
-------
da_i : xarray.DataArray
The differentiated data
"""
diff = self.diff(da, axis, **kwargs)
dx = self.get_metric(diff, (axis,))
return diff / dx
[docs] def integrate(self, da, axis, **kwargs):
"""
Perform finite volume integration along specified axis or axes,
accounting for grid metrics. (e.g. cell length, area, volume)
Parameters
----------
axis : str, list of str
Name of the axis on which to act
**kwargs: dict
Additional arguments passed to `xarray.DataArray.sum`
Returns
-------
da_i : xarray.DataArray
The integrated data
"""
weight = self.get_metric(da, axis)
weighted = da * weight
# TODO: We should integrate xarray.weighted once available.
# get dimension(s) corresponding to `da` and `axis` input
dim = self._get_dims_from_axis(da, axis)
return weighted.sum(dim, **kwargs)
[docs] def cumint(self, da, axis, **kwargs):
"""
Perform cumulative integral along specified axis or axes,
accounting for grid metrics. (e.g. cell length, area, volume)
Parameters
----------
axis : str or list or tuple
Name of the axis on which to act. Multiple axes can be passed as list or
tuple (e.g. ``['X', 'Y']``). Functions will be executed over each axis in the
given order.
to : str or dict, optional
The direction in which to shift the array (can be ['center','left','right','inner','outer']).
If not specified, default will be used.
Optionally a dict with separate values for each axis can be passed (see example)
boundary : None or str or dict, optional
A flag indicating how to handle boundaries:
* None: Do not apply any boundary conditions. Raise an error if
boundary conditions are required for the operation.
* 'fill': Set values outside the array boundary to fill_value
(i.e. a Dirichlet boundary condition.)
* 'extend': Set values outside the array to the nearest array
value. (i.e. a limited form of Neumann boundary condition.)
Optionally a dict with separate values for each axis can be passed.
fill_value : {float, dict}, optional
The value to use in the boundary condition with `boundary='fill'`.
Optionally a dict with separate values for each axis can be passed.
metric_weighted : str or tuple of str or dict, optional
Optionally use metrics to multiply/divide with appropriate metrics before/after the operation.
E.g. if passing `metric_weighted=['X', 'Y']`, values will be weighted by horizontal area.
If `False` (default), the points will be weighted equally.
Optionally a dict with seperate values for each axis can be passed.
Returns
-------
da_i : xarray.DataArray
The cumulatively integrated data
"""
weight = self.get_metric(da, axis)
weighted = da * weight
# TODO: We should integrate xarray.weighted once available.
return self.cumsum(weighted, axis, **kwargs)
[docs] def average(self, da, axis, **kwargs):
"""
Perform weighted mean reduction along specified axis or axes,
accounting for grid metrics. (e.g. cell length, area, volume)
Parameters
----------
axis : str, list of str
Name of the axis on which to act
**kwargs: dict
Additional arguments passed to `xarray.DataArray.weighted.mean`
Returns
-------
da_i : xarray.DataArray
The averaged data
"""
weight = self.get_metric(da, axis)
weighted = da.weighted(weight)
# get dimension(s) corresponding to `da` and `axis` input
dim = self._get_dims_from_axis(da, axis)
return weighted.mean(dim, **kwargs)
def _select_grid_ufunc(funcname, signature: _GridUFuncSignature, module, **kwargs):
# TODO to select via other kwargs (e.g. boundary) the signature of this function needs to be generalised
def is_grid_ufunc(obj):
return isinstance(obj, GridUFunc)
# This avoids defining a list of functions in gridops.py
all_predefined_ufuncs = inspect.getmembers(module, is_grid_ufunc)
name_matching_ufuncs = [
f for name, f in all_predefined_ufuncs if name.startswith(funcname)
]
if len(name_matching_ufuncs) == 0:
raise NotImplementedError(
f"Could not find any pre-defined {funcname} grid ufuncs"
)
signature_matching_ufuncs = [
f for f in name_matching_ufuncs if f.signature.equivalent(signature)
]
if len(signature_matching_ufuncs) == 0:
raise NotImplementedError(
f"Could not find any pre-defined {funcname} grid ufuncs with signature {signature}"
)
matching_ufuncs = signature_matching_ufuncs
# TODO select via any other kwargs (such as boundary? metrics?) once implemented
all_kwargs = kwargs.copy()
# boundary = kwargs.pop("boundary", None)
# if boundary:
# matching_ufuncs = [uf for uf in matching_ufuncs if uf.boundary == boundary]
if len(matching_ufuncs) > 1:
# TODO include kwargs used to match in this error message
raise ValueError(
f"Function {funcname} with signature='{signature}' and kwargs={all_kwargs} is an ambiguous selection"
)
elif len(matching_ufuncs) == 0:
raise NotImplementedError(
f"Could not find any pre-defined {funcname} grid ufuncs with signature='{signature}' and kwargs"
f"={all_kwargs}"
)
else:
# Exactly 1 matching function
return matching_ufuncs[0], kwargs
def raw_interp_function(data_left, data_right):
# linear, centered interpolation
# TODO: generalize to higher order interpolation
return 0.5 * (data_left + data_right)
def raw_diff_function(data_left, data_right):
return data_right - data_left
def raw_min_function(data_left, data_right):
return np.minimum(data_right, data_left)
def raw_max_function(data_left, data_right):
return np.maximum(data_right, data_left)
def _maybe_get_axis_kwarg_from_mapping(
kwargs: Union[str, float, Dict[str, Union[str, float]]], axname: str
) -> Union[str, float]:
if isinstance(kwargs, dict):
return kwargs[axname]
else:
return kwargs
_other_docstring_options = """
* 'dirichlet'
The value of the array at the boundary point is specified by
`fill_value`.
* 'neumann'
The value of the array diff at the boundary point is
specified[1]_ by `fill_value`.
.. [1] https://en.wikipedia.org/wiki/Dirichlet_boundary_condition
.. [2] https://en.wikipedia.org/wiki/Neumann_boundary_condition
"""